Algorithms in Java, Part 5 Graph Algorithms
Robert Sedgewick, "Algorithms in Java, Part 5 Graph Algorithms"
Addison Wesley | 4.17MB | ISBN: 0201361213 | 528 pages | CHM | 2003 | English
Once again, Robert Sedgewick provides a current and comprehensive introduction to important algorithms. The focus this time is on graph algorithms, which are increasingly critical for a wide range of applications, such as network connectivity, circuit design, scheduling, transaction processing, and resource allocation. In this book, Sedgewick offers the same successful blend of theory and practice that has made his work popular with programmers for many years. Michael Schidlowsky and Sedgewick have developed concise new Java implementations that both express the methods in a natural and direct manner and also can be used in real applications.
Algorithms in Java, Third Edition, Part 5: Graph Algorithms is the second book in Sedgewick's thoroughly revised and rewritten series. The first book, Parts 1-4, addresses fundamental algorithms, data structures, sorting, and searching. A forthcoming third book will focus on strings, geometry, and a range of advanced algorithms. Each book's expanded coverage features new algorithms and implementations, enhanced descriptions and diagrams, and a wealth of new exercises for polishing skills. The natural match between Java classes and abstract data type (ADT) implementations makes the code more broadly useful and relevant for the modern object-oriented programming environment.
The Web site for this book (www.cs.princeton.edu/~rs/) provides additional source code for programmers along with a variety of academic support materials for educators.
Coverage includes:
# A complete overview of graph properties and types
# Diagraphs and DAGs
# Minimum spanning trees
# Shortest paths
# Network flows
# Diagrams, sample Java code, and detailed algorithm descriptions
A landmark revision, Algorithms in Java, Third Edition, Part 5 provides a complete tool set for programmers to implement, debug, and use graph algorithms across a wide range of computer applications.
Robert Sedgewick, "Algorithms in Java, Part 5 Graph Algorithms"
Addison Wesley | 4.17MB | ISBN: 0201361213 | 528 pages | CHM | 2003 | English
Once again, Robert Sedgewick provides a current and comprehensive introduction to important algorithms. The focus this time is on graph algorithms, which are increasingly critical for a wide range of applications, such as network connectivity, circuit design, scheduling, transaction processing, and resource allocation. In this book, Sedgewick offers the same successful blend of theory and practice that has made his work popular with programmers for many years. Michael Schidlowsky and Sedgewick have developed concise new Java implementations that both express the methods in a natural and direct manner and also can be used in real applications.
Algorithms in Java, Third Edition, Part 5: Graph Algorithms is the second book in Sedgewick's thoroughly revised and rewritten series. The first book, Parts 1-4, addresses fundamental algorithms, data structures, sorting, and searching. A forthcoming third book will focus on strings, geometry, and a range of advanced algorithms. Each book's expanded coverage features new algorithms and implementations, enhanced descriptions and diagrams, and a wealth of new exercises for polishing skills. The natural match between Java classes and abstract data type (ADT) implementations makes the code more broadly useful and relevant for the modern object-oriented programming environment.
The Web site for this book (www.cs.princeton.edu/~rs/) provides additional source code for programmers along with a variety of academic support materials for educators.
Coverage includes:
# A complete overview of graph properties and types
# Diagraphs and DAGs
# Minimum spanning trees
# Shortest paths
# Network flows
# Diagrams, sample Java code, and detailed algorithm descriptions
A landmark revision, Algorithms in Java, Third Edition, Part 5 provides a complete tool set for programmers to implement, debug, and use graph algorithms across a wide range of computer applications.
Subscribe to:
Post Comments (Atom)
Post a Comment